

TxACOL Workshop Texas Asphalt Concrete Overlay Design and Analysis System

5-5123-03-P1 Project Director: Dr. Dar-Hao Chen

TxACOL Worksho p

TTI Research Team: Sheng Hu, Fujie Zhou, and Tom Scullion

General Information

- Two workshops were held respectively on Aug. 25 at Paris, Tx and on Oct. 6 at Austin, Tx
- More than 30 representatives from TxDOT attended
- Introduction of TxACOL software, key input parameters, and related lab and field tests were presented
- Attendees practiced the software step by step

Presentation Outline

- Introduction
- Program training and exercises
- \cdot Key inputs for existing

TxACOL Worksho p

pavement and field testing

• Key inputs for asphalt overlay

Expected Learning

Outcomes

- Be able to perform program installation and un-installation
- Be familiar with creating, editing, saving, and running a project file
- Know how to design an asphalt overlay using the TxACOL program

TxACOL Worksho p Understand Key input parameters and the requested lab or field test

Presentation Outline

- Introduction
- Program training and exercises
 - Key inputs for existing

TxACOL Worksho p

pavement and field testing

Key inputs for asphalt overlay

TxACOL Flowchart

Texas

ide6

TXACOL

Worksho

р

D

Transportation

TxACOL Features

lide7

- · M-E program
- User-friendly interface
- Short running time
- Default values provided in the software
- Traffic input is compatible to the current pavement design software FPS19W

TxACOL Features (Continued)

- Pavement temperature is automatically predicted from EICM model
- Rutting and cracking are analyzed simultaneously
- Output is in Excel format and can be easily incorporated into electronic documents and reports

TxACOL Technical Background

How to Install

- lide10
- Double click "Setup.exe" file
- If this is the first installation, the following screens will appear:

🕅 TxACOL	t₽ TxACOL
Welcome to the TxACOL Setup Wizard	Select Installation Folder
TXACOL	T_{XACO4}
The installer will guide you through the steps required to install TxACOL on your computer.	The installer will install TxACOL to the following folder.
	To install in this folder, click "Next". To install to a different folder, enter it below or click "Browse". Folder: C:\Program Files\TTI\TxACOL\ Browse Disk Cost
WARNING: This computer program is protected by copyright law and international treaties. Unauthorized duplication or distribution of this program, or any portion of it, may result in severe civil or criminal penalties, and will be prosecuted to the maximum extent possible under the law.	Install TxACOL for yourself, or for anyone who uses this computer: Everyone Just me
Cancel < Back Next >	Cancel < Pack Next >
	Choose your favorite
	installation folder here

TXACOL

Worksho

р

Launch the Program

lide12

Double click the icon

or

Presentation Outline

- Introduction
- Program training and exercises
 - Key inputs for existing

TxACOL Worksho p

pavement and field testing

Key inputs for asphalt overlay

Step 1: Create a New Project File

Step 2: General

Project [Project1]	General Information
General Information Origet Identification Analysis Parameters & Criteria	Click Project Name: Project1
	Type of AC Overlay Design
Traffic	C AC/AC C AC/JPCP(JRCP) C AC/CRCP
🐼 Climate 🐼 Structure & Material Properties	Design Life (years) 15 🔆
	Specify Construction Information
	OK Cancel
Analysis	

Step 3: Project

TxACOL Worksho p

▼

٨

٨

Step 5: Traffic Input

Step 6: Climate Input

lide19	1	🚰 Texas Asphalt Concrete Overlay Design a	nd /	Analysis System						
		File Option								
		□- I Project [Project1] I General Information	G	Climatic Data Input	3.	14				$\overline{\mathbf{v}}$
		Project Identification								
	Analysis Parameters & Criteria	NAME OF	Current Climatic Data File: C:\TxACOL\projects\austin.icm							
				Load Existin	ng Climatic Data File Creat	e New Cli	matic Data	File		
		Structure & Material Properties		Climatic data for a specific weather stat	ion 🖸 Interpolate climatic dat for a gi					
			NIGON N	Select Weather Station		->				
			No.		30.19 Latitude (degrees.minutes)	Open	k in: 🗀 projects		▼ ← E ☆ □▼	<u>? 🔀</u>
					-97.46 Longitude (degrees.minutes)		ACoverAC			
					648 Elevation (ft)	My Recent Documents	 	- -50% -90%		
						Desktop	⊂_trial ⊂Sensitivity ≧allice			
			Nov.			My Document	A austin Carlsbad			
							A Hobart			
						My Compute	r 🖻 texas1			
TYACOL			200			My Network				
TACOL			and a			10000	File name:	austin	•	Open
Worksho				Station Location:			Files of type:	Climate Data(*.icm)	_	Cancel
р				Available Data Months:						
		Anchuin			Cancel					
		Anaiysis								
									11.	

Cext Asph. Concette Dr. Lay es in a		
 Project [Project1] General Information Project Identification Analysis Parameters & Criteria 	Climatic Data Input	γ_{λ}
Inputs Traffic Climate Double Click Structure & Material Properties Results	Cimatic data for a specific weather station Select Weather Station ABILENE, TX AMARILLO, TX ANGLETON/LAKE JACKSON, TX AUSTIN/DERGSTROM, TX BEAUMONT/PORT ARTHUR, TX BORGER, TX BORGER, TX COLEGE STATION, TX COLEGE STATION, TX CORPOE, TX CORJICANA, TX CORPUS CHRISTI, TX COTULIA, TX Station Location: CAMP MABRY ARMY NATL GRDB Available Data Months: 116	g Climatic Data File Create New Climatic Data File n • Interpolate climatic data for a given location 30.19 Latitude (degrees.minutes) -97.46 Longitude (degrees.minutes) 548 Elevation (ft) 548 Elevation (ft) 549 Elevation (ft) 541 0.0 miles, AUSTIN/CITY, TX, CAMP MABRY ARMY NATL GRDB, Lat. 567 #2 10.5 miles, AUSTIN/BERGSTROM, TX, AUSTIN-BERGSTROM INTL APT, Lat. 30.11, Lon97.41, Ele. 638, Months. 100 7 #3<400 miles, BURNET, TX, BURNET MUNI CRADDOCK FIELD, Lat. 30.44, Lon98.03, Ele. 632, Months. 114 7 #4 7 #3<400 miles, SURNET, TX, NEW BRAUNFELS MUNICIPAL AP, Lat. 29.43, Lon98.03, Ele. 632, Months. 116 7 #5 64. miles, SAN ANTONIO, TX, INTERNATIONAL AIRPORT, Lat. 29.2, Lon98.28, Ele. 579, Months. 94 #6
Anabicia		Generate Cancel

TXACOL Worksho

Step 9: Structure (Continued)

Material Type:	Type D	Thickness(inch): 2
Thermal Coeffici	ent of Expansion (1e-6 i	n/in/F) 13.5 Poisson Ratio: 0.35
Superpave PG Binde	r Grading	Modulus Input
High Temp (C)	Low Temp (C)	Cevel 3 (Default Value) C Level 2 (Witczak Model) C Level 1 (Test Da Default Value)
64		
70		
76		
		No Input Needed.
Material Performano	e Properties	
Grant	- Demonstra	
Fractu	re moperues	
Rutting	g Properties	

TXACOL

Worksho p

Step 10: AC Material Properties Input Level 3 Input Level 1 Input

AC OverLay1	AC OverLay1
Material Type: Type D Thickness(inch): 2 Thermal Coefficient of Expansion (1e-6 in/in/F) 13.5 Poisson Ratio: 0.35	Material Type: Type D Thickness(nch): 2 Thermal Coefficient of Expansion (1e-6 in/n/F) 13.5 Poisson Ratio: 0.35
Superpave PG Binder Grading Modulus Input High Temp (C) Low Temp (C) -22 -28 64 Perpart of the second	Superpave PG Binder Grading Modulus Input C Level 2 (Witczak Model) © Level 2 (Witczak Model) © Level 1 (Test Data) High Temp (C) -22 -28 64 -22 -28 70 -22 -28 70 -22 -28 70 -27 -28 70 -27 -28 70 -27 -28 70 -27 -28 70 -27 -28 100 -27 -28 114 -25 10 40 -70 100 -27 100 -28
Material Performance Properties Fracture Properties Rutting Properties OK Cancel	Material Performance Properties Fracture Properties Import Export OK Cancel

You can import or export dynamic modulus here

TXACOL

Worksho p

Step 11: Fracture and Rutting Properties Input

Fracture Properties Rutting Properties

lumber of Temperatures	1 .		Number of Temperatures	1 .	
Temperature (F)	A	n	Temperature (F)	alpha	mu
77	2.0865e-8	4.3475	104	0.7609	0.7265

Step 12: Existing Layer Properties Input Existing AC Existing PCC

Existing AC			Existing JPCP(JRCP)
Material Type: Existing AC Thermal Coefficient of Expansion) (1e-6 in/in/F): 13.5	Thickness(inch): 8 Poisson Ratio: 0.35	Material Type: Existing JPCP
Main Cracking Pattern Cracking Type C Alligator Cracking C Longitudinal Cracking Transverse Cracking Block Cracking FWD Back No. c	Transverse Cracking Options Severity Level LTE Value (%) Crack Spacing (ft) kcalculated Modulus f Temperatures Temperature(°F) Modul S00	Severity Level	Thickness(inch): 8 Poisson Ratio: 0.15 Thermal Coefficient of Expansion (1e-6 in/in/F): 5.5 General Properities Joint/Crack Spacing (ft) 15 Modulus (ksi) 4000 Load Transfer Efficiency (%) 70
	ОК	Cancel	OK Cancel
		The default val between JP	v ues are different CP and CRCP

TXACOL

Worksho p

Step 13: Base Layer Properties Input Granular Base Stabilized Base

Existing Base 1	Existing Base 1	
Granular Base Thickness(inch): 8 Poisson Ratio: 0.35 Level 2: Typical design value C Level 1: Monthly design value	Material Type Thickness(inch):	Stabilized Base 8 Poisson Ratio: 0.2
Modulus Input Typical Modulus (ksi) 50	Mechanical Strength Pro	perties
	OK	Cancel
OK Cancel		

TXACOL

Worksho p

Step 14: Subgrade Properties Input Level 2 Level 1

Subgrade Layer	Subgrade Layer
Subgrade Thickness(inch): Poisson Ratio: 0.4	Material Type: Subgrade Thickness(inch): Poisson Ratio:
Level 2: Typical design value Modulus Input Typical Modulus (ksi) 4	C Level 2: Typical design value C Level 1: Monthly design value Modulus Input Month Modulus (ksi) Jan. 4 Feb. 4 Mar. 4 Apr. 4 May 4 June 4 July 4 Aug. 4 Sep. 4 Oct. 4 Nov. 4 Dec. 4
OK Cancel	OK Cancel

Step 15: Save the Project File

lide28

Toxas

Step 16: Run Analysis

lide29

Example 1 (Paris Workshop) · AC over AC

- · Design life: 10 years
- · District: Paris, Lamar
- Traffic: 5 million ESALs for 20 years
- Location: latitude 33°39', longitude -95°33', and elevation 600 ft

Example 1 (Paris Workshop) (Continued)

- Layer thickness
 - AC overlay: 2 inches; Existing AC: 3 inches; Base: 6 inches
- · AC overlay property
 - Mix type: Type D; Binder type: PG 76-22
 - Modulus Input Level: Level 3-default values
 - Fracture properties and Rutting properties: default values

· Existing AC layer property

- Transverse cracking, medium severity, cracking space: 15 ft
- FWD modulus @ 77 °F: 500 ksi
- · Base
 - Type: CTB, Modulus: 200 ksi
 - Subarade

Example 1 (Paris Workshop) Result

Cracking

Rutting

Example 1 (Austin • Overlay Type: AC over JPCP

- Design or Analysis Life: 15 years •
- District: Austin; County: Travis •
- Analysis Parameters & Criteria: **Reflective Cracking Rate Limit: 50%**

AC Rutting: 0.5 inch

- Traffic: ADT-Beginning: 20000; ADT-End: 35000; ESALs: 5.0 million; Speed: 60 mph
- Weather Station: Austin/City, Tx

TXACOL Worksho р

Example 1 (Austin Workshop) (Continued) · Layer thickness

- AC overlay: 2.5 inches; Existing JPCP: 9 inches; Base: 4 inches
- · AC overlay property
 - Mix type: Type D; Binder type: PG 76-22
 - Modulus Input Level: Level 3-default values
 - Fracture properties and Rutting properties: default values
- Existing JPCP property
 - Modulus: 4000 ksi, cracking space: 15 ft, LTE: 70%
- · Base
 - Type: Granular base, Modulus: 50 ksi
- Subgrade
 - Modulus: By default

Exercise 1

- Use "New" function
- Change the previous example to 2-lift overlays
- The top overlay is the same Type D mix, but its thickness reduces to 1.5 inches

- The bottom overlay is 1 inch
 CAM mix with a PG76-22 binder
- All the other inputs are kept the same as Example 1

Exercise 2

- Use "Save as" function
- Change the previous exercise back to one lift overlay
- Select overlay mix: SMA-D with a PG76-22 binder
- Keep all the other inputs the same as Example 1

Exercise 2_Hint

- Use "save as" function
- Click radio button "1" to remove an overlay (Remember: choose/highlight one overlay first)

Structure & Material Pro	perties			
AC OverLav	Existing	JPCP(JRCP)	Existing Base	C 2
		Pavement Stru	icture	Matorial
Status	Layer	Thickness	Material Type	Properties
AC OverLay1	ににもないても知	1.5	Type D	ОК
AC OverLay2	新聞をお知識を招	1	CAM	Edit
Existing JPCP(JRCP)		9	Existing JPCP	OK
Existing Base1	·法守法:《法守法》	4	Granular Base	ОК
Subgrade Layer	and Strand and		Subgrade	ОК
	ОК		ancel	

Summary for Different Overlay Mixes

2.5 inches Type D

After 52 months, Reflective Cracking Rate reaches 50%.

Rut depth reaches 0.084 inches after 15 years (180 months).

1.5 inches Type D +1 inch CAM

After 129 months, Reflective Cracking Rate reaches 50%.

Rut depth reaches 0.3 inches after 15 years (180 months).

TxACOL Worksho p

2.5 inches SMA

After 129 months, Reflective Cracking Rate reaches 50%.

Rut depth reaches 0.08 inches after 15 years (180 months).

Example 2 - Overlay Thickness Design

- Overlay Type: AC over JPCP
- · Design Life: 10 years
- · District: Wichita Falls; County: Cooke
- Analysis Parameters & Criteria: Reflective Cracking Rate Limit: 50% AC Rutting: 0.5 inch

- Traffic: ADT-Beginning: 19350; ADT-End: 28800; ESALs: 4.5 million; Speed: 60 mph
- Weather Station: Wichita Falls, Tx

Example 2 - Overlay Thickness Design (Continued)

- · Layer thickness
 - AC overlay: Unknown; Existing JPCP: 8 inches; Base: 4 inches
- · AC overlay property
 - Mix type: Type D; Binder type: PG 76-22
 - Modulus Input Level: Level 3-default values
 - Fracture properties and Rutting properties: default values
- · Existing JPCP property
 - Modulus: 4000 ksi, joint space: 15 ft, LTE: 70%

· Base

- Type: Granular base, Modulus: 30 ksi

- · Subgrade
 - Modulus: By default

Trial Thicknesses During Design

· Overlay thickness trial 1: 2 inches

After 15 months, Reflective Cracking Rate reaches 50%.

Rut depth reaches 0.05 inches after 15 years (180 months).

Overlay thickness trial 2: 4 inches

After 162 months, Reflective Cracking Rate reaches 50%.

Rut depth reaches 0.077 inches after 15 years (180 months).

Trial Thicknesses During Design (Continued)

• Overlay thickness trial 3: 3.5 inches

After 100 months, Reflective Cracking Rate reaches 50%.

Rut depth reaches 0.07 inches after 15 years (180 months).

 Obviously for all these cases, the rutting problem is not significant. To meet the 10 years design life requirement, a 4 inches overlay is recommended

Exercise 3

- Change the existing JPCP's LTE to 50%
- Keep the other inputs the same as Example 2
- The recommended overlay thickness=?

Answer to Exercise 3

lide44

5 inches

- Trial 1: 4 inches, 69 months
- Trial 2: 5 inches, 148 months
- Trial 3: 4.5 inches, 105 months

Tips and Reminders

- Accept default values if you don't have specific test results
- Use climatic interpolation function when there is no existing weather station available in this area
- Use "save as" to reduce some input work
- Save the project file before clicking "Analysis" button
- Do not move or rename the project file manually

•

Presentation Outline

- Introduction
- Program training and exercises
 - Key inputs for existing

- pavement and field testing
- Key inputs for overlays and lab

Key Input Parameters for Existing Pavements

- · Existing pavements
 - 1) Layer modulus and 2) Joints/cracks LTE
- Field testing
 - FWD
 - RDD

Existing JPCP(JRCP)			×
Material Type:	Existing J	PCP	
Thickness(inch):	9	Poisson Ratio:	0.15
Thermal Coefficien	t of Expansio	n (1e-6 in/in/F):	5.5
General Properities			
Joint/Crack Spacing	g (ft)	15	
Modulus (ksi)		4000	
Load Transfer Effic	iency (%)	70	
ОК		Cancel	

JPCP Pavement Evaluation

- For Layer modulus backcalculation
 - center slab
 - 30 drops per section (max spacing: 0.1 mile)

- · For LTE
 - joint measurements
 - · FWD

FWD Backcalculated Modulus

 In Texas, "MODULUS 6.0" is commonly used for modulus backcalculation

			TTI M	IODULUS	ANALYSIS	SYSTEM	1 (SUMMAR	RY REPORT)			(\	/ersion 6.0)
District:20 (Beaumo County :122 (JASPE Highway/Road: USOO9	nt) R) 6		Pavemen Base: Subbase Subgrad	nt: :: le:	Thicknes 10.0 10.0 0.0 97.9	s(in) 0 0 0 8(by DB)	M Mi 3	40DULI RANG inimum 340,000 10,000 5,	E(psi) Maximum 5,500,000 550,000	Poissor H1: H2: H3: H4:	Ratio V v = 0.2 v = 0.3 v = 0.0 v = 0.0	/alues 20 35 00 35
Load Station (lbs)	Measured Def R1 R2	lection (m R3	nils): R4	R5	R6	R7	Calculate SURF(E1)	ed Moduli v BASE(E2)	alues (ksi) SUBB(E3)	: A SUBG(E4) E	bsolute RR/Sens	Dpth to Bedrock
$\begin{array}{c} 0.000 & 11,070 \\ 0.197 & 11,098 \\ 0.399 & 11,051 \\ 0.595 & 11,035 \\ 0.797 & 10,880 \\ 0.994 & 10,943 \\ 1.200 & 10,975 \\ 1.393 & 11,154 \\ 1.601 & 10,876 \\ 1.798 & 11,074 \\ 1.995 & 10,979 \\ 2.197 & 10,864 \\ 2.399 & 11,051 \\ 2.588 & 10,721 \\ 2.789 & 10,947 \\ 2.999 & 10,832 \\ 3.200 & 10,947 \\ 3.401 & 11,066 \\ 3.610 & 11,039 \\ 3.612 & 10,900 \\ 3.796 & 11,051 \\ 4.000 & 10,939 \\ 4.194 & 10,943 \\ 4.399 & 10,882 \\ 4.600 & 10,983 \\ 4.998 & 10,880 \\ 4.801 & 10,983 \\ 4.998 & 10,876 \\ 5.199 & 10,816 \\ 5.400 & 10,886 \\ 5.602 & 10,991 \\ 5.799 & 10,717 \\ 6.000 & 10,816 \\ 5.401 & 10,886 \\ 6.204 & 10,705 \\ 6.401 & 10,816 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.55 2.80 3.25 6.61 3.86 3.78 4.54 3.966 2.660 2.89 3.600 2.89 3.600 1.78 3.360 1.78 1.649 2.01 1.788 1.133 2.300 1.999 2.301 2.302 1.988 2.312 2.302 1.565 2.489 2.315 2.325 2.383	3.00 2.27 5.60 3.16 3.61 1.52 2.35 2.268 2.39 2.35 2.268 2.39 1.36 2.39 1.36 2.39 1.36 2.39 1.36 1.52 1.35 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.55 1.74 1.52 1.55 1.765 1.795 1.795 1.290 2.30	$\begin{array}{c} 2.52\\ 1.87\\ 2.21\\ 4.69\\ 2.54\\ 2.68\\ 2.76\\ 2.39\\ 1.92\\ 2.12\\ 2.49\\ 2.12\\ 2.49\\ 2.12\\ 2.49\\ 1.20\\ 2.44\\ 0.93\\ 0.98\\ 0.58\\ 1.42\\ 1.22\\ 1.41\\ 1.56\\ 1.42\\ 1.56\\ 1.56\\ 1.56\\ 1.59\\ 1.59\\ 1.59\\ 1.59\\ 1.91\\ \end{array}$	$\begin{array}{c} 1.96\\ 1.46\\ 1.80\\ 3.57\\ 1.95\\ 2.01\\ 1.89\\ 0.860\\ 2.24\\ 1.59\\ 1.61\\ 1.59\\ 1.61\\ 1.59\\ 1.61\\ 0.74\\ 1.61\\ 0.74\\ 1.61\\ 1.01\\ 0.81\\ 1.06\\ 1.30\\ 0.81\\ 1.12\\ 1.29\\ 1.16\\ 1.41\\ \end{array}$	$\begin{array}{c} 1.59\\ 1.17\\ 1.42\\ 2.70\\ 1.49\\ 1.20\\ 1.69\\ 1.28\\ 0.67\\ 1.34\\ 0.52\\ 0.67\\ 1.34\\ 0.52\\ 0.62\\ 0.50\\ 0.311\\ 0.85\\ 0.73\\ 1.10\\ 0.85\\ 0.73\\ 0.95\\ 0.96\\ 0.99\\ 0.9\\ 0.$	$\begin{array}{r} 3457.9\\ 5165.5\\ 3383.0\\ 3037.8\\ 3324.7\\ 5458.4\\ 2825.1\\ 3437.5\\ 3609.0\\ 2649.9\\ 4262.8\\ 5500.0\\ 2649.9\\ 4262.8\\ 5065.9\\ 3183.2\\ 4323.0\\ 4492.1\\ 5500.0\\ 3135.3\\ 1743.7\\ 5500.0\\ 3135.3\\ 1743.7\\ 5500.0\\ 4323.2\\ 5500.0\\ 4423.2\\ 5500.0\\ 6423.2\\ 5500.0\\ 5500.0\\ 6423.2\\ 5500.0\\ 5500.0\\ 5500.0\\ 5500.0\\ 5500.0\\ 5500.0\\ 5500.0\\ 5500.0\\ 5500.0\\ 5500.0\\ 5500.0\\ 5500.0\\ 5500.0\\ 5500.0\\$	$\begin{array}{c} 315.2\\ 163.8\\ 340.2\\ 81.1\\ 114.5\\ 59.1\\ 13.6\\ 316.6\\ 125.2\\ 71.7\\ 550.0\\ 103.6\\ 401.1\\ 60.5\\ 318.3\\ 131.4\\ 149.8\\ 82.2\\ 267.4\\ 289.0\\ 148.2\\ 27.2\\ 547.7\\ 31.5\\ 550.0\\ 550.0\\ 363.8\\ 103.0\\ 259.3\\ 144.2\\ 517.6\\ 176.3\\ 364.2\\ 517.6\\ 176.3\\ 364.2\\ 517.6\\ 176.3\\ 364.2\\ 517.6\\ 176.3\\ 364.2\\ 517.6\\ 176.3\\ 364.2\\ 517.6\\ 176.3\\ 364.2\\ 517.6\\ 176.3\\ 364.2\\ 517.6\\ 176.3\\ 364.2\\ 517.6\\ 176.3\\ 364.2\\ 517.6\\ 176.3\\ 364.2\\ 517.6\\ 176.3\\ 364.2\\ 157.8\\ 176.3\\ 364.2\\ 157.8\\ 176.3\\ 364.2\\ 157.8\\ 176.3\\ 364.2\\ 157.8\\ 176.3\\ 364.2\\ 157.8\\ 176.3\\ 364.2\\ 157.8\\ 176.3\\ 364.2\\ 157.8\\ 100.2\\ 100$		$\begin{array}{c} 10.8\\ 16.0\\ 12.4\\ 5.8\\ 11.9\\ 10.8\\ 13.6\\ 28.1\\ 12.8\\ 10.4\\ 13.5\\ 15.3\\ 13.3\\ 13.0\\ 37.8\\ 36.6\\ 28.8\\ 35.5\\ 64.4\\ 26.9\\ 23.3\\ 26.1\\ 17.3\\ 26.5\\ 22.4\\ 18.0\\ 36.5\\ 18.0\\ 36.5\\ 18.0\\ 19.4\\ 16.1\\ \end{array}$	$\begin{array}{c} 1.20\\ 0.92\\ 0.75\\ 2.53\\ 1.01\\ 1.96\\ 2.77\\ 1.11\\ 0.97\\ 5.29\\ 0.52\\ 1.46\\ 1.04\\ 1.38\\ 3.88\\ 1.44\\ 1.48\\ 1.46\\ 2.19\\ 9.099\\ 1.84\\ 1.44\\ 1.48\\ 2.19\\ 9.099\\ 1.84\\ 1.46\\ 2.19\\ 1.84\\ 1.48\\ 1.46\\ 2.19\\ 1.62\\ 1.16\\ 1.62\\ 1.16\\ 1.1$	147.5 137.0 130.4 125.1 102.6 \$1.5 * 91.5 104.2 108.7 * 92.3 111.1 103.7 \$4.6 149.4 \$8.9 300.0 * 95.6 \$6.9 73.5 96.4 * 300.0 * 138.1 * 300.0 * 149.6 * 140.0 *
Mean: Std. Dev: Var Coeff(%): 3	3.62 3.13 1.21 1.14 3.41 36.37	2.73 1.08 39.42	2.20 0.93 42.28	1.79 0.79 44.08	1.37 0.61 44.39	1.06 0.45 42.60	4199.3 1017.8 24.2	232.1 169.7 73.1	0.0 0.0 0.0	21.3 11.6 54.2	1.77 1.31 73.72	118.0 36.3 30.7

FWD Based LTE at Joints/Cracks

LTE = (W2j/W1j)/ (W2c/W1c)

TxACOL Worksho p

Near the slab center

Near the joint/crack

RDD Based LTE Evaluation

RDD Raw Data

Flexible Pavement Evaluation • For layer modulus backcalculation

- 30 drops per section (max spacing 0.1 mile)

For LTE evaluation

- FWD based, similar to JPCP

FWD Based LTE

n	en	Load Mea	isured Defl	ection (mil	s):		
		Station (lbs)	R1	R2	R	1/R2	LTE (%)
	Center	0	10,359	9.45	4.15	0.439153	3
1/2	Crack	21	10,284	10.03	3.79	0.377866	5 <mark>86</mark>
	Center	67	10,355	7.31	3.55	0.485636	5 <mark>.</mark>
3	Crack	84	10,312	10.31	3.68	0.356935	5 73
	Contor	00	10 244	6 56	2 24	0 5001/4	
4	Crack	112	10,244	10.49	1 3/	0.303140	7 81
-	CIACK	112	10,189	10.45	4.34	0.41372	, 01
	Center	136	9,795	9.04	5.14	0.568584	1
5	Crack	153	10,288	11.52	4.41	0.382813	3 <mark>67</mark>
	Center	169	10,300	8.48	4.07	0.479953	3
6	Crack	182	10,395	6.36	3.77	0.592767	7 124
	Canton	100	10.153	10.10	F (2)	0 55350	
7	Center	196	10,153	10.19	5.03	0.552502	- - 80
,	CIACK	207	10,343	8.87	4.35	0.49041	/ 0.
	Center	222	10,228	9.73	5.33	0.54779	e e e e e e e e e e e e e e e e e e e
8	Crack	231	10,113	11.72	4.2	0.358362	2 <mark>65</mark>
	Center	248	10,077	11.04	5.7	0.516304	1
9	Crack	262	10,153	10.57	4.39	0.415326	5 <mark>80</mark>
	Center	290	10,145	7.09	3.41	0.480959	Ð
10	Crack	304	10,161	8.3	3.78	0.455422	2 95
	Casta	225	10.252	6.0	2.02	0.56476	
4.4	Center	325	10,252	6.8	3.82	0.561/65	

FWD Based LTE Measurement

Flexible Pavement-Severity Level Base LTE

Low severity crack: LTE=85%

Crack width<1/8"

Medium severity crack: LTE=70%

 1/8"<Crack width<1/4" or any crack (<1/4") with adjacent random low severity cracking

High severity crack: LTE=55%

 Crack width>1/4" or any crack (<1/4") with adjacent random medium to high severity cracking

•

Presentation Outline

- Introduction
- Program training and exercises
 - Key inputs for existing

- pavement and field testing
- Key inputs for asphalt overlays

Key Inputs for Asphalt Overlays Level 1

- 1. Dynamic modulus $|E^*|$
- 2. Fracture properties (A and n)
- 3. Rutting properties (a and μ)

Dynamic Modulus |E*|

Test equipment

Sample size: 4" diameter by 6" high

Replicates: 3

Dynamic Modulus |*E**| (Continued) Stest temperatures: 14, 40, 70, 100, and 130°F

6 loading frequencies:
 25, 10, 5, 1, 0.5, and 0.1Hz

Sample $|E^*|$ values (ksi)

	25Hz	10Hz	5Hz	1Hz	0.5Hz	0.1Hz
14°F	2346.7	2307.4	2175	1810	1682	1378
40°F	1843	1687	1498	1080	916	619
70°F	820	597	467	280	223	139

Dynamic Modulus |E*|

\cdot Input interface in the program

AC OverLay1									X
Material Type: Type D Thermal Coefficient of Expansion (1e-6 in/in/f) 13.5	Thickr Poi	ness(inch) sson Ratio): 2.5 p: 0.35					
Superpave PG Binder Grading High Temp (C) -22 -28 64	Modulus C Level I Test Da Dyna Numt	Input 3 (Default Val ita mic Modulus (E per of Tempera	ue) OL *,ksi) — atures:	evel 2 (V	Vitczak M Numbe	r of freq	© Level	1 (Test [)ata)
70 76	Ter	nperature (F) 14 40 70	25 2346.7 1843	10 2307.4 1687 507	Frequen 5 2175 1498	cy (Hz) 1 1810 1080	0.5 1682 916	0.1 1378 619	
Material Performance Properties Fracture Properties Rutting Properties		70 100 130	61	597 118 50 Import	96 43	280 64 32 Export	223 54 29 t	40 23	
	ок		Cancel						

Fracture Properties: A & n

Fracture model

TXACOL Worksho

р

Fracture Properties A & n (Continued)

· Test equipment: Overlay Tester

Step 1: Modulus Test

Step 2: Cracking test to obtain A, n

Three replicates required

Fracture Properties A & n (Continued)

Modulus test –preparing samples

•

Fracture Properties A & n (Continued)

Modulus test – installing new base plates

Regular OT Machine

TxACOL Worksho p

OT-E* System

Fracture Properties A & n (Continued)

Modulus test – mounting

Fracture Properties A & n (Continued)

Cracking test

Same as regular OT test except with a

smaller opening displacement: 0.017"

Fracture Properties A & n (Continued)

· Excel macro to determine A & n

Modulus Input	
Sample Modulus (ksi) 300	Input
······	
OK	
F0395.5A 300ksi.xls [Compatibility Mode] - Microsoft Excel	
Home Insert Page Layout Formulas Data Review View Add-Ins	
Data Descharte Carlos Euri	
Table Tealer Uskum screen Index Screen Unkide Scher Unkide Message Bar Scherol Window All Panes- Unkide Ada Minow All Panes- Unkide Ada	
Cracking Cra	
Property Property Modulus Analysis Load/Unload Displacement Temperature	
L A n (ksi) cycles Time (s) (inch) (F)	
	Output
dc $d(x_{1})n$	Output
$= A(K)^n$	•
dC/dN and SIF	
10	
3 y = 2,3190E-09x ^{4,13727€100}	
5	
a ¹ 10 19 1000	
9 9	
2 0.1 - SIF (MPa*mm^0.5)	

TxACOL Worksho p

25

Fracture Properties: A & n

Input interface in the program

🔓 Fra	acture Property	Data	
Ni	umber of Temperatures	1 .	
	Temperature (F)	А	n
	77	2.0865e-8	4.3475
,			
	OK		Cancel

Rutting Properties α & μ

· Rutting model

Model Calibration

Rutting property α & μ (Continued)

- Test equipment: same as |E*| test
- Testocoaditions 0.1s loading+0.9s rest 2 replicates required

Rutting Properties: α & μ (Continued)

 $\cdot \ \alpha$ & μ determination method

lide73

Rutting Properties: α & μ (Continued)

Input interface in the program

	📲 Rutting Property Data 🛛 🔛							
	Number of Te	mperatures	1	• •				
	Temperature (F)		alpha		mu			
\searrow	10	4	0.7609	0.7265				
	1							
		ОК		Cancel				
	_							

lide74

Lab Test Summary

Dynamic modulus |*E**| test 3 replicates

Rutting properties ($\alpha \& \mu$) test 2 replicates

TxACOL Worksho p ٠

Cracking properties (A & n) test 3 replicates

Questions?

lide76

Assistance needed?

· Contact TTI research team:

- by email
 - Sheng Hu: S-hu@ttimail.tamu.edu
 - · Fujie Zhou: F-zhou@ttimail.tamu.edu
 - · Tom Scullion: T-scullion@tamu.edu
- by phone
 - · Sheng Hu: 979-845-9767
 - · Fujie Zhou: 979-458-3965
 - · Tom Scullion: 979-845-9913

Thank you!

APPENDIX

Handouts for Austin Workshop

Texas Transportation Institute

Example 1

- Overlay Type: AC over JPCP
- Design or Analysis Life: 15 years
- · District: Austin; County: Travis
- Analysis Parameters & Criteria:
 - Reflective Cracking Rate Limit: 50%
 - AC Rutting: 0.5 inch
- Traffic:
 - ADT-Beginning: 20000; ADT-End: 35000; ESALs: 5.0 million; Speed: 60 mph
- Weather Station: Austin/City, Tx
- Layer thickness
 - AC overlay: 2.5 inches
 - Existing JPCP: 9 inches
 - Base: 4 inches
- AC overlay property
 - Mix type: Type D; Binder type: PG 76-22
 - Modulus Input Level: Level 3-default values
 - Fracture properties and Rutting properties: default values
- Existing JPCP property
 - Modulus: 4000 ksi, cracking space: 15 ft, LTE: 70%
- Base
 - Type: Granular base, Modulus: 50 ksi
- Subgrade
 - Modulus: By default

Analysis Result:

2.5 inches Type D

After 52 months, Reflective Cracking Rate reaches 50%.

Rut depth reaches 0.084 inches after 15 years (180 months).

- Overlay Type: AC over JPCP
- Design or Analysis Life: 15 years
- District: Austin; County: Travis
- Analysis Parameters & Criteria:
 - Reflective Cracking Rate Limit: 50%
 - AC Rutting: 0.5 inch
- Traffic:
 - ADT-Beginning: 20000; ADT-End: 35000; ESALs: 5.0 million; Speed: 60 mph
- Weather Station: Austin/City, Tx
- Layer thickness
 - AC overlay 1: 1.5 inches
 - AC overlay 2:1 inches
 - Existing JPCP: 9 inches
 - Base: 4 inches
- AC overlay 1 property
 - Mix type: Type D; Binder type: PG 76-22
 - Modulus Input Level: Level 3-default values
 - Fracture properties and Rutting properties: default values
- AC overlay 2 property
 - Mix type: CAM; Binder type: PG 76-22
 - Modulus Input Level: Level 3-default values
 - Fracture properties and Rutting properties: default values
- Existing JPCP property
 - Modulus: 4000 ksi, cracking space: 15 ft, LTE: 70%
- Base
 - Type: Granular base, Modulus: 50 ksi
- Subgrade
 - Modulus: By default

Analysis Result: (Please fill in the blanks):

1.5 inches Type D +1 inch CAM

Aftermonths, Reflective Cracking Rate reaches 50%.							
Rut depth reaches	inches after 15 years (180 months).						

Exercise 2

- Use "Save as" function
- Change the previous exercise back to one lift overlay
- Select overlay mix: SMA-D with a PG76-22 binder
- Keep all the other inputs the same as Example 1

Analysis Result: (Please fill in the blanks):

2.5 inches SMA

After months, Reflective Cracking Rate reaches 50%.					
Rut depth reaches	inches after 15 years (180 months).				

Example 2: US82 Overlay Thickness Design

- Overlay Type: AC over JPCP
- Design Life: 10 years
- · District: Wichita Falls; County: Cooke
- Analysis Parameters & Criteria:
 - Reflective Cracking Rate Limit: 50%
 - AC Rutting: 0.5 inch
- Traffic
 - ADT-Beginning: 19350; ADT-End: 28800; ESALs: 4.5 million; Speed: 60 mph
- Weather Station: Wichita Falls, TX
- Layer thickness
 - AC overlay: Using trial thickness
 - Existing JPCP: 8 inches
 - Base: 4 inches
- AC overlay property
 - Mix type: Type D; Binder type: PG 76-22
 - Modulus Input Level: Level 3-default values
 - Fracture properties and Rutting properties: default values
- Existing JPCP property
 - Modulus: 4000 ksi, joint space: 15 ft, LTE: 70%
- Base
 - Type: Granular base, Modulus: 30 ksi
- Subgrade
 - Modulus: By default

The recommended overlay thickness=?

Answer :

4 inches

- Trial 1: 2 inches, 15 months
- Trial 2: 4 inches, 162 months
- Trial 3: 3.5 inches, 100 months

Exercise 3

- Change the existing JPCP's LTE to 50%
- Keep the other inputs the same as Example 2
- The recommended overlay thickness=?

Answer (Please fill in the blanks):

inches

- Trial 1: 4 inches, months
- Trial 2: 5 inches, months
- Trial 3: 4.5 inches, months